Monday, October 23, 2017
VOLUME -23 NUMBER 2
Publication Date: 02/1/2008
Advertisements

Archive >  February 2008 Issue >  Front Page News > 

Innovations Reap Huge Savings for Semiconductors
Russell Hajdaj prepares silicon wafers that will be "baked" as part of the processing required for producing new types of semiconductor devices. Photo: NIST photo Copyright Robert Rathe.
Gaithersburg, MD — A new report from the National Institute of Standards and Technology (NIST) shows that investment in measurement science has and will continue to have a dramatic effect on innovation, productivity, growth and competitiveness in and among high technology sectors. The report, "Economic Impact of Measurement in the Semiconductor Industry" is available on the NIST Web site (see web address below).

Citing the semiconductor industry as a case in point, the analysis, prepared for NIST by RTI International, estimates that the $12 billion spent on advancing measurement capabilities during the decade beginning in 1996 will have saved that sector more than $51 billion in scrap and rework costs by 2011 — a net benefit of approximately $39 billion.

330 Percent ROI
RTI estimates that for every dollar spent on measurement, the industry as a whole saw a $3.30 return. (Dollar amounts represent 2006 dollars adjusted for inflation.) The report found that the strategic focus on measurement technologies pursued by the International Technology Roadmap for Semiconductors (ITRS), a consortium of chip manufacturers and related stakeholders, benefited both the industry and consumers through the reduction of defect rates and the miniaturization of feature size. The advances fostered through this effort, among others, resulted in lower costs, higher product quality and ever faster processing speeds.

Measurement technology has allowed the industry to keep up with "Moore's Law," which predicts the number of transistors per chip will double every two years.

By the early 1990s, the industry realized it would no longer be possible to satisfy this benchmark without the ability to manipulate nanoscale-sized features. The report credits the initiative to augment nanoscale measurement capabilities outlined in the ITRS and its predecessor as one of the factors that helped manufacturers to increase the possible number of transistors per chip from 3.1 million in 1996 to 1.7 billion in 2006 while making marked improvements in quality, design, software and interoperability.

The report underlines the importance of measurement science to the semiconductor industry and highlights several areas that need further improvement if the industry is to stay on pace. These areas include the need for new standards for measuring features lengths at 32 nanometers, new techniques for controlling radio-frequency electromagnetic energy and high-frequency magnetic fields, and better chemical and materials standards, as well as new and more accurate calibration, interoperability and test standards. RTI gathered the information for this analysis through surveys and other means. The answered queries accounted for more than 80 percent of the semiconductor industry, and the results were taken to be representative of the industry as a whole. The results may also be viewed as conservative in that RTI was able to quantitatively estimate productivity impacts but not increases in quality.


For more information:
http://www.nist.gov; to see the report, "Economic Impact of Measurement in the Semiconductor Industry" go to the NIST Web site at http://www.nist.gov/director/planning/policy_studies.htm



 
 
European Space Agency approval for Ventec material in Amphenol Invotec rigid & flex-rigid production

Amphenol Invotec, one of Europe’s leading manufacturers of complex printed circuit boards (PCBs), and Ventec International, a world leader in the production of polyimide & high reliability epoxy laminates and prepregs, are delighted to announce that Ventec's VT-901 polyimide material is now fully qualified by ESA in Amphenol Invotec’s manufacturing process for rigid and Flex-rigid PCBs.


New Dry Film Negative Photoresist for MEMS and Wafer-Level Packaging

DELAWARE, OH Engineered Material Systems, Inc., a leading global supplier of negative photo resist materials for MEMS and TSV passivation/sealing applications, is pleased to introduce the DF-2005 dry-film negative photo resist for use in micro-electro mechanical systems (MEMS), wafer-level packaging and CMOS applications (metallization). This material formulation has been optimized for hot roll lamination and processing on MEMS and IC wafers.


 
search login